Matching theory - a sampler: from Dénes König to the present
نویسنده
چکیده
Plummer, M.D., Matching theory-a sampler: from D&es Kijnig to the present, Discrete Mathematics 100 (1992) 177-219.
منابع مشابه
Efficient Sampling for Bipartite Matching Problems
Bipartite matching problems characterize many situations, ranging from ranking in information retrieval to correspondence in vision. Exact inference in realworld applications of these problems is intractable, making efficient approximation methods essential for learning and inference. In this paper we propose a novel sequential matching sampler based on a generalization of the PlackettLuce mode...
متن کاملInstrument dependency of Kubelka-Munk theory in computer color matching
Different industries are usually faced with computer color matching as an important problem. The most famous formula which is commonly used for recipe prediction is based on Kubelka-Munk K-M theory. Considering that spectrophotometer’s geometry and its situation influence the measured spectral values, the performance of this method can be affected by the instrument. In the present study, three ...
متن کاملAn Algorithm Computing the Core of a Konig-Egervary Graph
A set S of vertices is independent (or stable) in a graph G if no two vertices from S are adjacent, and α(G) is the cardinality of a largest (i.e., maximum) independent set of G. G is called a König-Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. By core(G) we mean the intersection of all maximum independent sets of G. To decide whether core(G)...
متن کاملComputing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs
Let α (G) denote the maximum size of an independent set of vertices and μ (G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is a perfect matching. If α (G) + μ (G) = |V (G)|, then G is called a König-Egerváry graph. A graph is unicyclic if it has a unique cycle. It is known that a maximum matching can be found in O(m •√n) time for a graph with n v...
متن کاملA Characterization of König-Egerváry Graphs Using a Common Property of All Maximum Matchings
The independence number of a graph G, denoted by α(G), is the cardinality of an independent set of maximum size in G, while μ(G) is the size of a maximum matching in G, i.e., its matching number. G is a König–Egerváry graph if its order equals α(G)+μ(G). In this paper we give a new characterization of König–Egerváry graphs. We also deduce some properties of vertices belonging to all maximum ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 100 شماره
صفحات -
تاریخ انتشار 1992