Matching theory - a sampler: from Dénes König to the present

نویسنده

  • Michael D. Plummer
چکیده

Plummer, M.D., Matching theory-a sampler: from D&es Kijnig to the present, Discrete Mathematics 100 (1992) 177-219.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Sampling for Bipartite Matching Problems

Bipartite matching problems characterize many situations, ranging from ranking in information retrieval to correspondence in vision. Exact inference in realworld applications of these problems is intractable, making efficient approximation methods essential for learning and inference. In this paper we propose a novel sequential matching sampler based on a generalization of the PlackettLuce mode...

متن کامل

Instrument dependency of Kubelka-Munk theory in computer color matching

Different industries are usually faced with computer color matching as an important problem. The most famous formula which is commonly used for recipe prediction is based on Kubelka-Munk K-M theory. Considering that spectrophotometer’s geometry and its situation influence the measured spectral values, the performance of this method can be affected by the instrument. In the present study, three ...

متن کامل

An Algorithm Computing the Core of a Konig-Egervary Graph

A set S of vertices is independent (or stable) in a graph G if no two vertices from S are adjacent, and α(G) is the cardinality of a largest (i.e., maximum) independent set of G. G is called a König-Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. By core(G) we mean the intersection of all maximum independent sets of G. To decide whether core(G)...

متن کامل

Computing Unique Maximum Matchings in O(m) time for Konig-Egervary Graphs and Unicyclic Graphs

Let α (G) denote the maximum size of an independent set of vertices and μ (G) be the cardinality of a maximum matching in a graph G. A matching saturating all the vertices is a perfect matching. If α (G) + μ (G) = |V (G)|, then G is called a König-Egerváry graph. A graph is unicyclic if it has a unique cycle. It is known that a maximum matching can be found in O(m •√n) time for a graph with n v...

متن کامل

A Characterization of König-Egerváry Graphs Using a Common Property of All Maximum Matchings

The independence number of a graph G, denoted by α(G), is the cardinality of an independent set of maximum size in G, while μ(G) is the size of a maximum matching in G, i.e., its matching number. G is a König–Egerváry graph if its order equals α(G)+μ(G). In this paper we give a new characterization of König–Egerváry graphs. We also deduce some properties of vertices belonging to all maximum ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 100  شماره 

صفحات  -

تاریخ انتشار 1992